
PDF Vision .Net
(Multi-platform .Net library)

SautinSoft

Linux development

manual
Table of Contents

1. Preparing environment ...2

1.1. Check the installed Fonts availability...3

2. Creating “Convert HTML to PDF” application ..5

https://www.sautinsoft.com/

1. Preparing environment

In order to build multi-platform applications using .NET Core on Linux, the first steps are for

installing in our Linux machine the required tools.

We need to install .NET Core SDK from Microsoft and to allow us to develop easier, we will

install an advance editor with a lot of features, Visual Studio Code from Microsoft.

Both installations are very easy and the detailed description can be found by these two links:

Install .NET Core SDK for Linux.

Install VS Code for Linux.

Once installed VS Code, you need to install a C# extension to facilitate us to code and

debugging:

Install C# extension.

https://dotnet.microsoft.com/download
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://dotnet.microsoft.com/download

1.1. Check the installed Fonts availability

Check that the directory with fonts "/usr/share/fonts/truetype" is exist.

Also check that it contains *.ttf files.

If you don't see this folder, make these steps:

1. Download the archive with *.ttf fonts: https://sautinsoft.com/components/fonts.tar

2. Uncompress the downloaded font’s archive to a directory and add it to the font path,

a list of directories containing fonts:

tar xvzf

3. Create a directory for new fonts

mkdir /usr/share/fonts/truetype

4. Move the uncompressed font files to the new font directory

mv *.ttf /usr/share/fonts/truetype

5. Navigate to the font directory

cd /usr/share/fonts/truetype

6. Create fonts.scale and fonts.dir

mkfontscale && mkfontdir

fc-cache

7. Add the new font directory to the X11 font path

chkfontpath --add /usr/share/fonts/truetype

8. Restart X font server

/etc/rc.d/init.d/xfs restart

You can verify the successful addition of the new path by running chkfontpath

command or by listing X font server's /etc/X11/XF86Config file.

If you do not have root access, copy the *.ttf to ~/.fonts directory instead.

https://sautinsoft.com/components/fonts.tar

Or you may install “Microsoft TrueType core fonts” using terminal and command:

$ sudo apt install ttf-mscorefonts-installer

Read more about TrueType Fonts and “How to install Microsoft fonts, How to update fonts

cache files, How to confirm new fonts installation” .

With these steps, we will ready to start developing.

In next paragraphs we will explain in detail how to create simple console application. All of

them are based on this VS Code guide:

Get Started with C# and Visual Studio Code

Not only is possible to create .NET Core applications that will run on Linux using Linux as a

developing platform. It is also possible to create it using a Windows machine and any

modern Visual Studio version, as Microsoft Visual Studio Community 2017.

https://linuxconfig.org/install-microsoft-fonts-on-ubuntu-20-04-focal-fossa-desktop
https://linuxconfig.org/install-microsoft-fonts-on-ubuntu-20-04-focal-fossa-desktop
https://docs.microsoft.com/en-us/dotnet/core/tutorials/with-visual-studio-code

2. Creating “Convert HTML to PDF” application

Create a new folder in your Linux machine with the name html to pdf.

For example, let’s create the folder “html to pdf” on Desktop (Right click-> New Folder):

Open VS Code and click in the menu File->Open Folder. From the dialog, open the folder

you’ve created previously:

Next you will see the similar screen:

Now, open the integrated console – the Terminal: follow to the menu Terminal -> New

Terminal (or press Ctrl+Shift+’):

Create a new console application, using dotnet command.

Type this command in the Terminal console: dotnet new console

A new simple Hello world! console application has been created. To execute it, type this

command: dotnet run

You can see the typical “Hello world!” message.

Now we are going to convert this simple application into something more interesting.

We’ll transform it into an application that will convert a html file to a pdf file.

First of all, we need to add the package reference to the sautinsoft.pdfvision assembly

using Nuget.

In order to do it, follow to the Explorer and open project file “html to pdf.csproj” within

VS Code to edit it:

Add these lines into the file ”html to pdf.csproj”:

<ItemGroup>

<PackageReference Include=”sautinsoft.pdfvision” Version=”” />

</ItemGroup>

It’s the reference to sautinsoft.pdfvision package from Nuget.

At the moment of writing this manual, the latest version of sautinsoft.pdfvision was 6.X.

But you may specify the latest version, to know what is the latest, follow:

https://www.nuget.org/packages/sautinsoft.pdfvision

At once as we’ve added the package reference, we have to save the “html to pdf.csproj”

and restore the added package.

Follow to the Terminal and type the command: dotnet restore

https://www.nuget.org/packages/sautinsoft.pdfvision
https://www.nuget.org/packages/sautinsoft.pdfvision

Very important!

There are a lot of Linux varieties: Suse, Fedora, Debian, Ubuntu, etc.

In addition, there are cloud platforms: AWS Lambda, Google Cloud, Azure, Apex, etc.

Because our dll works with Graphics and using GDI+ API, you need to check, that your

system has System.Drawing.Common is the graphics library which ships as part of .NET

Core. On macOS and Linux, it uses libgdiplus as its back-end.

There are existing ways to install libgdiplus on macOS and Linux. On macOS, you can use

the mono-libgdiplus Homebrew package; on Ubuntu Linux, you can install the libgdiplus-

dev package.

https://www.nuget.org/packages/System.Drawing.Common
https://github.com/mono/libgdiplus
https://formulae.brew.sh/formula/mono-libgdiplus
https://packages.ubuntu.com/search?keywords=libgdiplus&searchon=names&suite=all§ion=all
https://packages.ubuntu.com/search?keywords=libgdiplus&searchon=names&suite=all§ion=all

If you have installed LibGdiPlus’ dll and it still doesn't work. Please add (update) this string

in your project:

<PackageReference Include="runtime.osx.10.10-x64.CoreCompat.System.Drawing"

Version="5.23.62"/>

Good, now our application has the reference to sautinsoft.pdfvision package and we can

write the code to convert html to pdf and other formats.

Follow to the Explorer, open the Program.cs, remove all the code and type the new:

The code:

using System;

using System.IO;

using SautinSoft.PdfVision;

namespace Sample

{

 class Program

 {

 static void Main(string[] args)

 {

 ConvertHtmlFileToPdfFile();

 }

 public static void ConvertHtmlFileToPdfFile()

 {

 string inpFile = Path.GetFullPath(@"..\..\Sample.html");

 string outFile = new FileInfo("Result.pdf").FullName;

 // Local chromium will be downloaded into this directory.

 // This takes time only at the first startup.

 string chromiumDirectory = new DirectoryInfo(@"..\..\..\..\..\..\Local

Chromium\").FullName;

 PdfVision v = new PdfVision();

 // v.Serial = "123456789";

 HtmlToPdfOptions options = new HtmlToPdfOptions()

 {

 ChromiumBaseDirectory = chromiumDirectory,

 PageSetup = new PageSetup()

 {

 PaperType = PaperType.Letter,

 Orientation = Orientation.Portrait,

 PageMargins = new PageMargins()

 {

 Left = LengthUnitConverter.ToPoint(5, LengthUnit.Millimeter),

 Top = LengthUnitConverter.ToPoint(5, LengthUnit.Millimeter),

 Right = LengthUnitConverter.ToPoint(5, LengthUnit.Millimeter),

 Bottom = LengthUnitConverter.ToPoint(5, LengthUnit.Millimeter)

 }

 },

 PrintBackground = true,

 Scale = 1

 };

 try

 {

 v.ConvertHtmlToPdf(inpFile, outFile, options);

 // Open the result for demonstration purposes.

 System.Diagnostics.Process.Start(new

System.Diagnostics.ProcessStartInfo(outFile) { UseShellExecute = true });

 }

 catch (Exception ex)

 {

 Console.WriteLine($"Error: {ex.Message}");

 Console.ReadLine();

 }

 }

 }

}

To make tests, we need an input html document. For our tests, let’s place a html file with

the name “sample.html” at the Desktop.

If we open this file in the default PDF Viewer, we’ll its contents:

Launch our application and convert the “sample.html” into “result.pdf”, type the command:

dotnet run

Well done! You have created the “HTML to PDF” application under Linux!

If you have any troubles or need extra code, or help, don’t hesitate to ask our SautinSoft

Team at support@sautinsoft.com!

mailto:support@sautinsoft.com

