
PDF Metamorphosis .Net
(Multi-platform .Net library)

SautinSoft

Linux development 

manual
Table of Contents

1. Preparing environment .................................................................................................................................2

2. Creating “Convert RTF/DOCX to PDF” app..............................................................................................4

https://www.sautinsoft.com/


1. Preparing environment

In order to build multi-platform applications using .NET Core on Linux, the first steps are for

installing in our Linux machine the required tools.

We need to install .NET Core SDK from Microsoft and to allow us to develop easier, we will 

install an advance editor with a lot of features, Visual Studio Code from Microsoft.

Both installations are very easy and the detailed description can be found by these two links:

Install .NET Core SDK for Linux.

Please check the current version of .Net Core (2.X, 3.X) 

Install VS Code for Linux.

Once installed VS Code, you need to install a C# extension to facilitate us to code and 

debugging:

Install C# extension.

https://dotnet.microsoft.com/download
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=ms-vscode.csharp
https://dotnet.microsoft.com/download


In next paragraphs we will explain in detail how to create simple console application. All of 

them are based on this VS Code guide:

Get Started with C# and Visual Studio Code

Not only is possible to create .NET Core applications that will run on Linux using Linux as a 

developing platform. It is also possible to create it using a Windows machine and any 

modern Visual Studio version, as Microsoft Visual Studio Community 2017.

https://docs.microsoft.com/en-us/dotnet/core/tutorials/with-visual-studio-code


2. Creating “Convert RTF/DOCX to PDF” app

Create a new folder in your Linux machine with the name RTF and DOCX to PDF.

For example, let’s create the folder “RTF and DOCX to PDF” on the Desktop (Right click-> 

New Folder):

Open VS Code and click in the menu File->Open Folder. From the dialog, open the folder 

you’ve created previously:



Next you will see the similar screen:

Now, open the integrated console – the Terminal: follow to the menu Terminal -> New 

Terminal (or press Ctrl+Shift+’):

Create a new console application, using dotnet command.

Type this command in the Terminal console: dotnet new console



A new simple Hello world! console application has been created. To execute it, type this 

command: dotnet run

You can see the typical “Hello world!” message.

Now we are going to convert this simple application into something more interesting. 

We’ll transform it into an application that will convert html, rtf, docx files to pdf files.

First of all, we need to add the package reference to the sautinsoft.pdfmetamorphosis 

assembly using Nuget.

In order to do it, follow to the Explorer and open project file “RTF and DOCX to 

PDF.csproj” within VS Code to edit it:



Add these lines into the .csproj file:

  <ItemGroup>

    <PackageReference Include="sautinsoft.pdfmetamorphosis" Version="8.3.7.7"/>

  </ItemGroup>

It’s the reference to sautinsoft.pdfmetamorphosis package from Nuget.

At the moment of writing this manual, the latest version of sautinsoft.pdfmetamorphosis 

was 8.3.7.7. But you may specify the latest version, to know what is the latest, follow:

https://www.nuget.org/packages/sautinsoft.pdfmetamorphosis/

At once as we’ve added the package reference, we have to save the “RTF and DOCX to 

PDF.csproj” and restore the added package.

Follow to the Terminal and type the command: dotnet restore

Very important!

There are a lot of Linux varieties: Suse, Fedora, Debian, Ubuntu, etc.

In addition, there are cloud platforms: AWS Lambda, Google Cloud, Azure, Apex, etc.

Because our dll works with Graphics and using GDI+ API, you need to check, that your 

system has System.Drawing.Common is the graphics library which ships as part of .NET 

Core. On macOS and Linux, it uses libgdiplus as its back-end.

There are existing ways to install libgdiplus on macOS and Linux. On macOS, you can use 

the mono-libgdiplus Homebrew package; on Ubuntu Linux, you can install the libgdiplus-

dev package.

https://www.nuget.org/packages/sautinsoft.pdfmetamorphosis/
https://www.nuget.org/packages/System.Drawing.Common
https://github.com/mono/libgdiplus
https://formulae.brew.sh/formula/mono-libgdiplus
https://packages.ubuntu.com/search?keywords=libgdiplus&searchon=names&suite=all&section=all
https://packages.ubuntu.com/search?keywords=libgdiplus&searchon=names&suite=all&section=all


If you have installed LibGdiPlus’ dll and it still doesn't work. Please add (update) this string 

in your project: 

<PackageReference Include="runtime.osx.10.10-x64.CoreCompat.System.Drawing" 

Version="5.23.62"/>



As a result, your project should contain:

Good, now our application has the reference to sautinsoft.pdfmetamorphosis package 

and we can write the code to convert rtf and docx to pdf formats.

Follow to the Explorer, open the Program.cs, remove all the code and type the new:

The new code:

using System;
using System.IO;
using SautinSoft;

namespace RTF_and_DOCX_to_PDF

{
    class Program
    {
        static void Main(string[] args)
        {
           SautinSoft.PdfMetamorphosis p = new SautinSoft.PdfMetamorphosis();
           string docxFile = @"/home/jorgen/Documents/example.docx";
           string pdfFile = @"/home/jorgen/Documents/example.pdf";

             if (p.DocxToPdfConvertFile(docxFile, pdfFile) == 0)



System.Diagnostics.Process.Start(new System.Diagnostics.ProcessStartInfo(pdfFile) { UseShellExecute = true });

                else

                {
                    System.Console.WriteLine("Conversion failed!");
                    Console.ReadLine();

                }
        }
    }
}

To make tests, we need an input DOCX document. For our tests, let’s place the DOCX file 

with the name “example.docx” at the Documents.



If we open this file in the default Word’s Viewer, we’ll its contents:

Launch our application and convert the “example.docx” into “example.pdf”, type the 

command: dotnet run



You will see the result: “Example.pdf” and if open it :



Files “example.docx” and “example.pdf” have to appear on the Documents:

Well done! You have created the “Word to PDF” application under Linux!

If you have any troubles or need extra code, or help, don’t hesitate to ask our SautinSoft 

Team at support@sautinsoft.com.

mailto:support@sautinsoft.com

